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COMMENT 

On Lyapunov and dimension spectra of 2~ attractors, with an 
application to the Lozi map 
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Federal Republic of Germany 

Received 25 August 1988 

Abstract. We show that the Lyapunov spectra (and thus also the entropy and dimension 
spectra) of ZD attractors can be obtained from the stretching of any typical line. This is 
particularly simple for piecewise linear maps. In particular, it gives a very easy way of 
estimating these spectra for the Lozi map. Comparing with some previously published 
spectra, we find these to have large errors. 

Measures concentrated on fractal sets, such as invariant measures on  strange attractors 
or electrostatic charge distributions on fractal clusters, are typically characterised by 
a whole spectrum of dimension-like quantities. These spectra and their relation, in 
the case of dynamical systems, to the spectrum of Lyapunov exponents, has been the 
subject of numerous investigations in the recent literature [ 1-17]. 

In particular, it was conjectured in [7], and  proven for hyperbolic systems in [ 141, 
that the generalised dimensions D ( q )  introduced in [ l ]  are related to the Hausdorff 
dimensions f ( a )  of sets with pointwise dimension a via a Legendre transform. More 
precisely, let us define 

4 q )  = ( 9  - 1 ) D ( q )  (1) 

so then 

f(.) = a q  - T(9) a = d r / d q  q = df /da .  (2) 

The pointwise dimension a(x) is defined via the scaling of the masses of s-balls centred 
at  x, p ( x )  - s a ( X ) ,  while D ( q )  is defined via the (q - 1)th moment of pF : 

( p z - ’ ) -  E T ( 4 )  (3) 

(The averaging here is done with respect to the measure p, not with respect to the 
Lebesgue measure.) 

While the dimensions are very easy to compute for strange attractors at the onset 
of chaos and for systems with simple symbolic dynamics (e.g. Julia sets [9, 10, IS]), 
their estimation is much less easy for other systems. Even for the quadratic map 
x‘= a -x2 with arbitrary parameter a, or for simple ZD maps such as the Henon map, 
computing D ( q )  or f ( a )  precisely is non-trivial. In these cases, the situation is 
particularly complicated due to the non-hyperbolicity of the maps, which leads to a 
phase-transition-like phenomenon [ 151. 
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Rather than by a direct evaluation of (3), the estimate o f f ( a )  and D ( q )  is easiest 
via Lyapunov exponents. In the above systems, the Lyapunov exponents are not the 
same at every point, though they are of course the same nearly everywhere (provided 
the system is ergodic). Thus, one has fluctuations in the 'effective' Lyapunov exponents 
A ' " '  measured over a finite number, n, of iterations [2-61 (in the following, A will 
always denote the positive Lyapunov exponent). The D ( q )  are either obtained per- 
turbatively in q - 1 from cumulants of exp(nA'"') [2], from the generating function of 
these cumulants [5,6] or from the Legendre transform [ 111 of this generating function 
[8, 131. In addition to the generalised and pointwise dimensions, one can also introduce 
generalised dynamical entropies K ( q ) ,  pointwise entropies a. and the entropies Yo( a,,) 
of the set of trajectories with a,,, thus generalising the metric and topological entropies 
[2, 111. For natural measures on ZD hyperbolic attractors, the function T 0 ( q )  = 
( q  - l ) K ( q )  is essentially the generating function mentioned above [5,6, 121, a,, is just 
the Lyapunov exponent A and fo( a,,) is very simply related to f (  a ) .  The latter relation 
becomes particularly simple for maps with constant Jacobian J. With B = loglJ/, we 
obtain [12, 131: 

a = 1 + a,,/(a,,+ B ) .  (5) 

These equations seem to provide the easiest way to estimate f ( a )  and D ( q )  for 2~ 

hyperbolic attractors, provided the map is given in analytic form. 
Up to now, the trajectories from which f o (ao )  are to be estimated are arbitrary. 

We can either take randomly chosen chaotic trajectories, or else periodic trajectories. 
In the latter case, we use the fact that the natural measure can be approximated by a 
measure concentrated on all periodic orbits with period n, with each orbit carrying a 
mass [19-211 

Forbit  = exp(-A%it). (6) 

It was claimed in [16,17,22] that using periodic orbits is superior not only for some 
mathematical questions (something well known [23]), but also numerically. 

In this comment, I shall present a new way of estimating the Lyapunov spectrum 
(or, equivalently, the generalised entropies K ( q ) ) .  This method is most easily applied 
to piecewise linear maps such as the Lozi map [24]. Our numerical results, obtained 
with rather modest effort, and presented in figures 1 and 2 ,  show that both attempts 
of [17], to measure f ( a )  directly from (3) and to measure it from (4) via periodic 
orbits, contain large errors. In contrast to this, we found perfect numerical agreement 
with the results of [ 131. 

The new method of estimating K ( q )  for ZD hyperbolic attractors uses the way that 
an arbitrary line of finite length Lo in the basin of attraction is stretched during n 
iterations, for large n. It is shown in [25] that the total length L, increases according 
to the topological entropy, L, - Lo exp(nK(0)).  This is easily understood heuristically. 
Denote by ds, the length element of L,. Then 

- L,(exp(nA'"'))- Lo exp(nK(0)).  ( 7 )  
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Here, the second equality comes from the fact that, after many iterations, the curve 
will follow essentially the unstable manifold, for nearly all curves. Similarly, if the 
curve was chosen typically, the integration over so will essentially be equivalent to 
integrating over the start point xo with Lebesgue measure, which gives the last equation. 

The generalisation of (7) is now straightforward. The generalised entropy K (4)  is 
given by 

exp[ n (  1 - q ) K (  q ) ]  - (exp [( 1 - q ) n A ' " ' ] )  - 
def 

This is our main result. Practically, we use it as follows: we start with a straight line 
of length Lo,  and iterate n times. We evaluate the last integral by approximating each 
iterate by a chain of straight pieces. For each piece, it is easy to compute the length 
and  the derivative. The entire program is particularly easy to program in any computer 
language allowing recursive function calls, as the length can then be computed recur- 
sively. 

This method is most straightforwardly applied to piecewise linear maps such as 
the Lozi map [24]  (x, y )  + (1  - alxl +by, x). There, the integral in (8) reduces simply 
to a finite sum for any finite n, and can be evaluated exactly. The resulting f ( c y )  for 
the parameters values a = 1.7 and  b = 0.5 used in [ 171, obtained with n = 27, is given 
in figure 1. This took about 2 h CPU time on an  Atari home computer, and required a 
negligible amount of memeory. We first used (8) to obtain K ( q )  = 
1 limn+= log(Lp'/Lp_',) (since the ratios L?)/Lp?, showed large oscillations for q 3 2 
with period 2 in n ) .  We then performed the Legendre transform to f o (  c y o ) ,  and finally 
applied (4). As judged from the convergence with n, the errors in figure 1 should be 
less than the thickness of the line. 

1.2 1.3 c( 1.4 1.5 

Figure 1. f ( a )  spectrum for the Lozi map,  as  estimated from following the expansion of 
t h e  line { -0.5 S x C 0.5, y = 0) during 27 iterations. 

In order to compare with other approaches we show this result in figure 2,  together 
with other estimates, and  together with the diagonal line f ( c y )  = cy, to which the curve 
must be tangential for consistency. The broken curve denoted by a short dash is the 
result obtained in [17] by evaluating (3) using correlations of points in a random 
trajectory. Although correct near q = d f / d a  = 1, this is completely wrong for large cy 

(as was to be expected, unless extremely high statistics were used). The light curve is 
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1.2 1.3 1.4 1.5 
a 

Figure 2. The result of figure 1 (heavy curve) compared to ( i )  results from a correlation 
analysis [17] (- - -); (ii) an estimate based on the histogram of the Lyapunov spectrum of 
all period-17 orbits [17] (light continuous curve); and ( i i i )  an estimate based on the 
Lyapunov spectrum of a random orbit of length - lo7,  and using the Legendre transform 
of the moments (exp [ ( l  - q ) h ' " ' ] ) ,  with n = 2 2  (---). 

also from [17], but using all periodic orbits with period n = 17, and estimating the 
distribution of Lyapunov exponents from the histogram. Here the normalisation is 
completely wrong, which might be due to a wrong application of (4). But apart from 
this, the lack of smoothness of the curve reflects the fact that there are too few ( -  lo3) 
periodic orbits of length 17 for making a good histogram. The last entry in figure 2 
is the broken curve denoted by a long dash. It is simply obtained by iterating a 
randomly chosen point approximately 1.5 x lo7 times (this took approximately 7h on 
an Atari), estimating from this the moments of the Lyapunov spectrum (with n = 2 2 ) ,  
Legendre transforming them and finally using (4). Agreement with the 'exact' bold 
curve is so good that the two curves coincide, except in the wings. 

We also studied the parameter values a = (1  +J5)/2 and b = -0.3 used in [ 131. 
The differences in K ( q )  between our results and those of [13] are of the same order 
of magnitude (-2 x as those found within [ 131 when using periodic and random 
orbits (neither of which seems to be consistently more precise). 

We also tried to apply the method to the Henon map. First of all, it is obvious 
that (8) develops a singularity at q = 2 due  to the homoclinic tangencies, in agreement 
with the arguments of [15]. Thus, we can use (8) only for q < 2 .  Numerically, we 
approximated the iterates of an initial straight line near the unstable fixed point with 
As,=O.OOl by polygons with As, <0.001, for n up  to 30. For 1 < q < 2 ,  the results 
were not better than those obtained with other methods [2,12, 13,151. But for q 0, 
the resulting K ( q )  seem to be more precise than previous estimates. In particular, we 
obtain K ( -  1) = 0.4908 and  K (0) = 0.4630. 

In summary, we have given a new method of estimating the f( a) spectrum for ZD 

maps. Although in principle having a wider application, it is most efficient for piecewise 
linear maps such as the Lozi map. There it shows that some previous estimates [17] 
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have large errors, but that when applied correctly [ 131, periodic and chaotic trajectories 
seem to give comparably precise results. 

For other maps with a not-piecewise linear attractor, the method is less efficient, 
at least in the version used in the present paper. In a more sophisticated approximation 
one could use splines instead of polygons, but this has not been tried yet. 

The method can also be applied to higher-dimensional maps provided they have 
only one positive Lyapunov exponent. It can also in principle be extended to the case 
with several (say k)  positive A, but this would require [ 2 5 ]  evaluating the expansion 
of k-dimensional volumes, which seems rather awkward. 
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